
Topic 01 - Intro to Python - Notebook (during-class version)

January 15, 2025

1 Topic 1: Quick(ish) Introduction to Python

[2]: import platform
print(platform.python_implementation(), platform.python_version())

CPython 3.13.1

The goal of this lecture is to give you some of the basics. It’s not possible for us to cover everything
you’ll need to know ahead of time. As graduate students, you are expected to be able to do some
research and self-teaching on your own to build your coding skills, and of course you can always
come ask me for help!

A nice reference for a lot of the computational skills we’ll be covering (coding, unix command
line, git) is the “Software Carpentry” set of lessons: https://software-carpentry.org/lessons/. You
should seriously considering checking their tutorials for extra practice and more in-depth lessons!

This document is a “Jupyter Notebook”. It’s kind of like interactive mode, but also lets you
intersperse text, html, etc, among it. VS Code can run them natively once you’ve installed a
package. (If you open up a “ipynb” file in VS Code, it will prompt you to install the package and
then do it for you.)

Python is a whitespace-based language. In C, C++, Java, and many other languages, you use
braces to group code:

if (x == 1) {
do_something();

}

and the spacing is just for readability. For example, the following code does the same thing:

if (x == 1) { do_something();
}

In Python you use indenting, and colons (:) to have the same effect. You also do not use semicolons
(;) to end commands.

if x == 1:
do_something()

You have to be really careful to be consistent by either - always using tabs, or - always using spaces
(and the same number)

1

[3]: x = 1

[5]: if x == 1:
print("hello")

hello

[6]: if x == 1:
print("hello")

hello

[9]: if x == 1:
print("hello")
print("world")

Cell In[9], line 3
print("world")
^

IndentationError: unexpected indent

[10]: if x == 1:
print("hello")
print("world") # if you use a tab, Jupyter will fix it for you␣

↪automatically! Your code editor might not.

hello
world

Python uses if, for, and while statements like many other languages.

[11]: x = 1
while x < 10:

x = x + 2

print(x)

3
5
7
9
11

[12]: for y in range(3, 6): # 3, 4, 5
print(y)

3
4

2

5

[13]: for x in [1, 3, 5, 7]:
print(x+1)

2
4
6
8

[14]: for letter in "apple":
print(letter)

a
p
p
l
e

In a for loop, you can iterate over many different types of objects (lists, sets, tuples, dictionaries,
strings, etc.)

range(a,b) is a way of looping over all of the integers between a (inclusive) and b (exclusive).

[]: for z in "hello":
print(z)

[16]: for z in [19, -100, "banana", 5, 7]:
print(z+1)

20
-99

TypeError Traceback (most recent call last)
Cell In[16], line 2

1 for z in [19, -100, "banana", 5, 7]:
----> 2 print(z+1)

TypeError: can only concatenate str (not "int") to str

You may have noticed that Python is not a statically-typed language, which means you do not
need to tell it whether a variable you are defining is an integer or a string or a list, etc. You just
define it, and it figures it out.

But, there are still different types! You can always use the type function to check what type an
object has.

[17]: L = [1, 2, 3]
type(L)

3

[17]: list

[18]: L = (1,2,3)
type(L)

[18]: tuple

[19]: L = {1,2,3}
type(L)

[19]: set

[20]: sum([1,2,3])

[20]: 6

[21]: type(sum)

[21]: builtin_function_or_method

Now we’re going to discuss a bunch of the fundamental types in Python.

1.1 Integers, Floating Point Numbers, and Complex Numbers

[22]: x = 7
type(x)

[22]: int

[24]: y = 2 ** 1000
print(y)

10715086071862673209484250490600018105614048117055336074437503883703510511249361
22493198378815695858127594672917553146825187145285692314043598457757469857480393
45677748242309854210746050623711418779541821530464749835819412673987675591655439
46077062914571196477686542167660429831652624386837205668069376

[25]: import math
math.pi

[25]: 3.141592653589793

[26]: x = 7.0
type(x)

[26]: float

[27]: x = 3.0000000000000000001
print(x)

4

3.0

[28]: 3.0 == 3.0000000000000000001

[28]: True

[29]: y = 0.1
print(y)

0.1

[30]: 0.1 + 0.1 + 0.1 - 0.3

[30]: 5.551115123125783e-17

[32]: 0.1 + 0.1 + 0.1

[32]: 0.30000000000000004

[31]: 5.551115123125783 * (10 ^ (-17))
0.0000000000000000055511512....

[31]: -149.88010832439613

[33]: 0.1 + 0.1 + 0.1 == 0.3

[33]: False

[34]: 15 / 7

[34]: 2.142857142857143

[35]: 15 // 7

[35]: 2

[36]: z = complex(3, 5)
t = complex(1,-1)
print(z)
print(type(z))
print(z*t)

(3+5j)
<class 'complex'>
(8+2j)

1.2 Boolean
A boolean is just a True or False value. That’s it!

5

[37]: b = True
type(b)

[37]: bool

[38]: if b:
print("hello")
print("world")

hello
world

[39]: if not b:
print("hello")

[41]: t = 10 + 10 == 21 # Use "==" to test equality, and "=" to actually set␣
↪something equal

print(t)
type(t)

False

[41]: bool

[44]: # x = 1
while True:
x = x + 1
print(x)
will run forever!

1.3 None
There is a weird object in Python called None. It’s just a useful thing to have around, often as a
default value until you assign something.

[43]: y = None
print(y)
if y is None:

print("y has the value None")
y = 3
if y is None:

print("y has the value None")

None
y has the value None

1.4 Strings
A string is just a sequence of characters.

6

[4]: type("banana")
type('banana')

[4]: str

[6]: print("hello 'world'")

hello 'world'

You can do a million things with strings.

[7]: s = "banana"
s.split("n")

[7]: ['ba', 'a', 'a']

Use len to find the length of a string and + to concatenate two strings together.

[8]: one = "hello"
two = "world"
three = one + " " + two
print(len(three))
print(three)

11
hello world

[9]: three.len()

AttributeError Traceback (most recent call last)
Cell In[9], line 1
----> 1 three.len()

AttributeError: 'str' object has no attribute 'len'

1.5 Lists
A list is an ordered sequence of things.

[10]: L = [15, "banana", 7, False, [1, 2, 3]]

[11]: print(L)

[15, 'banana', 7, False, [1, 2, 3]]

Elements of lists are accessed with bracket notation, starting from 0.

[12]: L[0]

7

[12]: 15

[13]: L[1]

[13]: 'banana'

[14]: L[2]

[14]: 7

[15]: L[3]

[15]: False

[16]: L[4]

[16]: [1, 2, 3]

[18]: (L[4])[1]

[18]: 2

Use len(L) to get the length of a list.

[19]: print(L)
len(L)

[15, 'banana', 7, False, [1, 2, 3]]

[19]: 5

[20]: len(L[4])

[20]: 3

You can set elements of the list manually as well.

[21]: L

[21]: [15, 'banana', 7, False, [1, 2, 3]]

[22]: L[1] = "apple"

[23]: L

[23]: [15, 'apple', 7, False, [1, 2, 3]]

[24]: L[8] = "can't set this"

8

IndexError Traceback (most recent call last)
Cell In[24], line 1
----> 1 L[8] = "can't set this"

IndexError: list assignment index out of range

You can sort lists:

[25]: R = [15, -20, 0]
R.sort()
print(R)

[-20, 0, 15]

Notice the . in the notation above. We’ll talk about this more when we cover object-oriented pro-
gramming, but what we’re basically doing here is telling the list R to perform its sort() operation
on itself.

You may wonder why we did len(R) instead of R.len()… it’s kind of just a quirk. You get used
to it.

A few more quick list functions:

[26]: R

[26]: [-20, 0, 15]

[27]: R.append(17)
print(R)

[-20, 0, 15, 17]

[28]: R.extend([7, 8, 9])
print(R)

[-20, 0, 15, 17, 7, 8, 9]

Lastly (for now) you can concatenate two lists together with the + sign.

[29]: [1,2,3] + [4,5,6]

[29]: [1, 2, 3, 4, 5, 6]

[30]: L1 = [1,2,3]
L2 = [4,5,6]
L3 = L1 + L2
print(L1)
print(L2)
print(L3)

9

[1, 2, 3]
[4, 5, 6]
[1, 2, 3, 4, 5, 6]

[32]: print(R)
M = [100] + R
print(M)

[-20, 0, 15, 17, 7, 8, 9]
[100, -20, 0, 15, 17, 7, 8, 9]

[34]: R.append(100, 0)

TypeError Traceback (most recent call last)
Cell In[34], line 1
----> 1 R.append(100, 0)

TypeError: list.append() takes exactly one argument (2 given)

1.6 Sets
A list was an ordered sequence of things. A set is an unordered sequence of things with no
repeats (just like in math).

[35]: S = {1, 2, 3, 4}
print(S)

{1, 2, 3, 4}

[36]: T = {3, 1, 4, 2}
print(T)

{1, 2, 3, 4}

[37]: S == T

[37]: True

[38]: {1,3,3,3,2,4,4}

[38]: {1, 2, 3, 4}

You can’t access elements using the bracket notation because there is no first element, second
element, etc. You should never assume that you know the order Python will internally store your
list in!

[39]: S[2]

10

TypeError Traceback (most recent call last)
Cell In[39], line 1
----> 1 S[2]

TypeError: 'set' object is not subscriptable

[41]: for element in T:
print(element)

1
2
3
4

Here are some functions you can do with sets:

[42]: first = {1,5,6}
second = {2,4,5}

[48]: print(first.union(second))
print(first, second)

{1, 2, 4, 5, 6}
{1, 5, 6} {2, 4, 5}

[44]: second.union(first)

[44]: {1, 2, 4, 5, 6}

[45]: first.intersection(second)

[45]: {5}

[46]: first, second

[46]: ({1, 5, 6}, {2, 4, 5})

[47]: first.difference(second) # all of the things IN first, and NOT IN second

[47]: {1, 6}

[49]: # By the way, you write comments in python by just starting the line with the␣
↪pound key.

[50]: first

[50]: {1, 5, 6}

11

[51]: first.add(9)
print(first)

{1, 5, 6, 9}

[52]: first.add(5)
print(first) # No duplicates!

{1, 5, 6, 9}

[53]: first.remove(5)

[54]: print(first)

{1, 6, 9}

[55]: first.remove(5)

KeyError Traceback (most recent call last)
Cell In[55], line 1
----> 1 first.remove(5)

KeyError: 5

[56]: if 5 in first:
first.remove(5)

[58]: first.discard(5)
removes 5 if present, otherwise, does nothing

1.7 Tuples
It starts to get a little tricky here! A tuple is an ordered sequence of things.

Wait… isn’t that what a list was?

[62]: T = (1,2,3,4)
print(T)
type(T)

(1, 2, 3, 4)

[62]: tuple

[63]: L = [1,2,3,4]
L == T # They are different types of objects, so they can't be equal.

[63]: False

12

The key is that a tuple is what we call immutable. Once it’s defined, it cannot be changed, ever,
at all.

[64]: print(T)
print(T[2])

(1, 2, 3, 4)
3

[65]: T[2] = 17

TypeError Traceback (most recent call last)
Cell In[65], line 1
----> 1 T[2] = 17

TypeError: 'tuple' object does not support item assignment

[66]: T.append(4)

AttributeError Traceback (most recent call last)
Cell In[66], line 1
----> 1 T.append(4)

AttributeError: 'tuple' object has no attribute 'append'

It is still possible to do things like concatenate two tuples to make a new bigger tuple, but it’s a
new bigger tuple, and the original one is still unchanged.

[67]: T + (5,6)

[67]: (1, 2, 3, 4, 5, 6)

[68]: T

[68]: (1, 2, 3, 4)

So, we define a new tuple with parentheses, but there’s one catch: if your tuple has a single item,
it needs a special bit of syntax.

[69]: x = (1)
print(x)
type(x)

1

[69]: int

13

[70]: x = (1,)
print(x)
type(x)

(1,)

[70]: tuple

So, lists are mutable, tuples are immutable. Why do we need two different versions?

[71]: L = [1,2,3,4,5,6]
5 in L

[71]: True

Under-the-hood, when you store things in a set, Python is being super smart about how it stores
it. When you add an element to a set you really do not want python to have to scan one-by-one
through all the things in the set to make sure it’s not already there. So, it uses a clever technique
called hashing.

You don’t need to know the details right now, but the broad idea is that Python takes each thing
in the set and assigns a number to it called its hash, and then uses the hashes to make sure there
are no duplicates.

[72]: hash(17)

[72]: 17

[73]: hash("banana")

[73]: 3743417317288503042

[76]: hash((1,2,3,4))

[76]: 590899387183067792

[77]: hash([1,2,3])

TypeError Traceback (most recent call last)
Cell In[77], line 1
----> 1 hash([1,2,3])

TypeError: unhashable type: 'list'

[]: L = [1,2,3,4]

[]: {[1, 2, 3, 4], [1, 2], [7,8]}

14

[]: {(1, 2, 3, 4), (1, 2), (7, 8)}

The problem is that you can’t hash mutable things. Once you get an object’s hash, that needs
to stay its hash forever. You could hash a list, then appending an element to the list would mean
a new hash would have to be generated, and this would mess everything up.

Bottom line: Sometimes you need an immutable version of something, like to put it in a set.

[80]: {5, 17, [1,2,3]}

TypeError Traceback (most recent call last)
Cell In[80], line 1
----> 1 {5, 17, [1,2,3]}

TypeError: unhashable type: 'list'

[81]: {5, 17, (1,2,3)}

[81]: {(1, 2, 3), 17, 5}

[82]: {5, 17, {1,2,3}}

TypeError Traceback (most recent call last)
Cell In[82], line 1
----> 1 {5, 17, {1,2,3}}

TypeError: unhashable type: 'set'

Sets are mutable too! Sets must contain immutable things, but they themselves are mutable.

Of course we knew this, because we can do S.add(). So what if you want sets in your sets? There
is an immutable version of a set called a frozenset.

[83]: { 5, 17, frozenset({1, 2, 3}) }

[83]: {17, 5, frozenset({1, 2, 3})}

When should you use a tuple versus a list? - If it’s going to go in a set (or, as we’ll see in a second,
in a dictionary), it has to be immutable. Thus, use a tuple. - If you need to be able to add and
remove things, use a list. - If the size will always stay the same, you probably want a tuple. For
example, if you’re representing xy-coordiates, use tuples.

1.8 Dictionaries
You can think of a list as kind of like a mathematical function whose inputs are the the indices 0,
1, … and whose outputs are the elements of the list.

15

[84]: L = ["apple", "banana", "pear"]

[]: # 0 -> apple, 1 -> banana, 2 -> pear

In a dictionary, the inputs don’t have to be integers, they can be any (immutable) object.

[85]: # To define 17 -> apple, banana -> pear, (1, 2, 3) -> True
d = {

17 : "apple",
"banana" : "pear",
(1,2,3) : True

}
print(d)

{17: 'apple', 'banana': 'pear', (1, 2, 3): True}

The inputs are called keys and the outputs are called values.

[86]: d[17]

[86]: 'apple'

[87]: d["banana"]

[87]: 'pear'

[88]: d[(1,2,3)]

[88]: True

[89]: d["pear"] = "hello"
d["pear"]

[89]: 'hello'

[90]: d

[90]: {17: 'apple', 'banana': 'pear', (1, 2, 3): True, 'pear': 'hello'}

You can assign new values too

[91]: d[1] = "one"
print(d)

{17: 'apple', 'banana': 'pear', (1, 2, 3): True, 'pear': 'hello', 1: 'one'}

[92]: d[(2, 3, 5, 7)] = False

[93]: d

16

[93]: {17: 'apple',
'banana': 'pear',
(1, 2, 3): True,
'pear': 'hello',
1: 'one',
(2, 3, 5, 7): False}

[94]: d[[1,2,3]]= 4

TypeError Traceback (most recent call last)
Cell In[94], line 1
----> 1 d[[1,2,3]]= 4

TypeError: unhashable type: 'list'

Dictionaries are super useful, but take some getting used to. The keys are hashed in the background,
which makes looking up the value for a given key very fast.

[95]: for k in d.keys():
print(k)

17
banana
(1, 2, 3)
pear
1
(2, 3, 5, 7)

[96]: for v in d.values():
print(v)

apple
pear
True
hello
one
False

[97]: for pair in d.items():
print(pair)

(key, value)

(17, 'apple')
('banana', 'pear')
((1, 2, 3), True)
('pear', 'hello')
(1, 'one')

17

((2, 3, 5, 7), False)

1.9 Casting
You can tell Python to turn an object of one type into an object of another type. This is called
casting.

[98]: L = [3, 7, 7, 12]
print(L)

[3, 7, 7, 12]

[99]: T = tuple(L)
print(T)
print(L)

(3, 7, 7, 12)
[3, 7, 7, 12]

[100]: S = set(L)
print(S)

{3, 12, 7}

[101]: print(L)
list(set(L))

[3, 7, 7, 12]

[101]: [3, 12, 7]

[102]: dict(L)

TypeError Traceback (most recent call last)
Cell In[102], line 1
----> 1 dict(L)

TypeError: cannot convert dictionary update sequence element #0 to a sequence

[]: str(L)

[]: int(L)

[]: d = {1:"one", 2:"two", 3:"three"}

[]: list(d)

18

1.10 Practice
Time for some practice!

https://projecteuler.net/

Problem 1: mod, looping, and comprehensions

Problem 2: negative indexing

Problem 5: all / any, and thinking mathematically

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The
sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

[]: # mod - modulus
a % b -- the remainder you get when you divide a by b

list comprehensions
+=

[]:

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By
starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find
the sum of the even-valued terms.

[]:

2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any
remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

[]: # all / any

[]:

19

	Topic 1: Quick(ish) Introduction to Python
	Integers, Floating Point Numbers, and Complex Numbers
	Boolean
	None
	Strings
	Lists
	Sets
	Tuples
	Dictionaries
	Casting
	Practice

